

 Navigation

 	
 index

 	
 next |

 	RedRover 0.7.2 documentation

RedRover

RedRover is a behavior-driven testing utility suite for Django. It wraps
other powerful tools such as Nose and Selenium into a clean, readable
syntax that is easy to use.

User’s Guide

	Quickstart
	Dependencies

	Install RedRover

	Configuration

	Usage

	Test Discovery

Writing Tests

	Writing Tests
	Introduction

	Subjects and Assertions

	Behavior-driven Testing

Reference

Resources

	Bug Tracker [http://github.com/dustinfarris/redrover/issues]

	Code [http://github.com/dustinfarris/redrover]

 Copyright 2013, Dustin Farris.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RedRover 0.7.2 documentation

Quickstart

Basic requirements to run RedRover:

	Python 2.7 (Working on 3.x but not quite there)

	Django 1.4+ (tested with all micro-releases of 1.4)

Dependencies

These will be automatically installed for you:

	django_nose

	rednose

	splinter

It is also highly recommended that you install and use
FactoryBoy [https://github.com/dnerdy/factory_boy]. While not
strictly required to run RedRover, it is a very nice compliment
to RedRover’s operation and is used in many of the examples.

Install RedRover

Installing is easy via pip:

pip install redrover

Configuration

Add 'redrover' to the bottom of your 'INSTALLED_APPS'. Also add
the following to your settings.py:

TEST_RUNNER = 'redrover.RedRoverRunner'

Usage

Run your tests the same as usual. Django will use the custom test-
runner you specified in settings.py which gives RedRover the reigns.:

python manage.py test

Test Discovery

RedRover will discover your tests be recursively detecting Python
modules and then looking for any sub-module(file) ending in “_test.py”.
Because of this, it is recommended that you organize your tests in a
“tests” directory in your root project directory.

A sample Django project might look like this:

myproject
 |
 |-- manage.py
 |
 |-- myapp
 | |
 | |-- __init__.py
 | |-- models.py
 | |-- views.py
 | +-- urls.py
 |
 |-- myproject
 | |
 | |-- __init__.py
 | |-- settings.py
 | |-- urls.py
 | +-- wsgi.py
 |
 +-- tests
 |
 |-- __init__.py
 |-- factories.py
 |
 |-- models
 | |
 | |-- __init__.py
 | +-- myapp_mymodel_test.py
 |
 +-- requests
 |
 |-- __init__.py
 +-- myapp_pages_test.py

Within your ‘test’ Python files, you should import RedRover and subclass
the RedRoverTest or RedRoverLiveTest classes like this:

myapp_my_model_test.py

from redrover import *

from myapp.models import MyModel

class MyModelTest(RedRoverTest):

When you use the RedRoverTest or RedRoverLiveTest superclass you are
provided the “describe” decorator. When you decorate your individual
test cases with this decorator, they will be discovered by the test
runner regardless of whether the characters “test” appear in the method
name:

class MyModelTest(RedRoverTest):

 @describe
 def addition(self):
 assert_equal(2, 1 + 1)

 Copyright 2013, Dustin Farris.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	RedRover 0.7.2 documentation

Writing Tests

Introduction

The whole point of RedRover is to make writing Django tests easy and
fun. To that end, much of the traditional Python unittest syntax has
been bent or broken; but, RedRover does ultimately inherit from the
unittest library — if it works in unittest, it will work in RedRover.

Remember that tests are divided into 3 main categories:

	Unit Tests:

		Tests that check the a very specific piece of code is behaving as it
should.

These haven’t changed much. You can use the a few of the RedRover
goodies to make them look a bit nicer, but the concept is pretty much
the same.

	Integration Tests:

		Tests verifying that a given input to the program/website produces
the expected output.

This is where RedRover really steps up. Wrapping powerful Selenium
functionality into seemless syntax, you’ll be able to test your Django
pages, forms, and APIs with ease.

	Functional Tests:

		Tests that watch the program/website in action and report any odd
behavior.

For a Django website, these would consist of server pings, automated
browsing, and database querying. These are usually not part of the
Django project and are set up on a server or some service provider.

We’ll focus on Unit Tests and Integration Tests since those are the two
you will most likely be including in your project code. When writing
tests for a Django project, we’ll divide them into three areas:

	Unit Tests

	Model Tests

	Request Tests

Unit Tests will, again, test specific pieces of your Django project.
Model Tests, which could also be consider unit tests, will test that
your individual models are set up properly and behave as expected.
Finally, Request Tests will check that you Django project serves the
right pages and that they contain the right content as you navigate,
fill out forms, etc. These are your integration tests.

In your root project directory, you should a tests directory to
contain these. It would look something like this:

tests
 |
 |-- __init__.py
 |
 |-- factories.py
 |
 |
 |-- unit
 | |
 | |-- __init__.py
 | |
 | |-- some_method_test.py
 |
 |
 |-- models
 | |
 | |-- __init__.py
 | |
 | |-- someapp_model_test.py
 |
 |
 |-- requests
 |
 |-- __init__.py
 |
 |-- someapp_pages_test.py

You may be wondering about the “factories.py” file. That will hold
FactoryBoy [https://github.com/dnerdy/factory_boy] factories which
are an awesome replacement for fixtures. Use it.

Subjects and Assertions

The general syntax of RedRover works like this.

	Declare a subject

	Define the subject

	Refer to the subject using various assertions

You declare a subject by assigning it as a string to the ‘subject’ class
variable. You define it in the test-case’s ‘setUp’ method. You refer to
it in your various tests within the test-case.

The Subject

Here is an example of us declaring the subject of a test case to be
“mynumber” and defining it in the setUp method:

class SomeTest(RedRoverTest):

 subject = 'mynumber'

 def setUp(self):
 self.mynumber = 4

The Assertions

In the individual tests you will refer to the subject as ‘it’. “It” has
two primary tests: “should” and “should_not”. Within these tests we
pass an assertion that ‘should’ or ‘should not’ pass, and any additional
arguments that assertion might need.

The syntax looks like this:

it.should|should_not(assertion_name, [arg1, arg2, ...])

To enable this syntax we use the “describe” decorator. An example test
would look like this:

@describe
def adding_up_to_mynumber(self):
 it.should(equal, 2 + 2)

In this case, the assertion is “equal” and it should pass. Behind the
scenes “equal” compares self.mynumber — which in this case is 4 —
and 2 + 2. The do in fact equal, they “should” equal according to our
test, so this test passes.

You can also refer to attributes of the subject. Suppose we have some
object:

class MyObject(object):

 def __init__(self, name)
 self.name = name

 @property
 def greeting(self):
 return "My name is %s" % self.name

We could test the behavior of this object with a test-case that looks
like this:

class MyObjectTest(RedRoverTest):

 subject = 'myobject'

 def setUp(self):
 self.myobject = MyObject("bob")

 @describe
 def myobjects_name(self):
 its('name').should(be, "bob")

You can also test properties:

@describe
def my_objects_greeting(self):
 its('greeting').should(be, "My name is bob")

Behavior-driven Testing

The notion of “behavior-driven” testing is that you first define how
something behaves, and then you write the code to make it happen. To
define how something behaves you must first define what that something
is. That “something” becomes the name of our test-case class.

Model Tests

Suppose we have a Django app called “people” and we want to define the
behavior of a model within this app called “Person”. Our test would go
in a file named something like
tests/models/people_person_model_test.py and would be called
something like PersonModelTest here:

from redrover import *

class PersonModelTest(RedRoverTest):

The next step is to define what aspect of the Person model we care
about. In this case the answer is straight-forward, we care about an
instantiated version of the Person model. That becomes the subject of
our test case.

To define the “subject” of a test case, first declare it using a string,
then define it in the setUp method of the test case:

from redrover import *

from tests.factories import *

class PersonModelTest(RedRoverTest):

 subject = 'person'

 def setUp(self):
 self.person = PersonFactory.build()

Now you can use RedRover assertions to define the behavior this subject
should have. A commonly expected behavior of a Django class would be
that it responds to certain attributes and methods.:

class PersonModelTest(RedRoverTest):

 subject = 'person'

 def setUp(self):
 self.person = PersonFactory.build()

 @describe
 def attributes(self):
 it.should(respond_to, 'first_name')
 it.should(respond_to, 'last_name')
 it.should(respond_to, 'full_name')
 it.should(respond_to, 'age')
 it.should(respond_to, 'gender')

 it.should(be_valid)

We would further expect that if certain fields were blank or otherwise
invalid, the model would not validate:

@describe
def when_first_name_is_not_present(self):
 self.person.first_name = ""
 it.should_not(be_valid)

@describe
def when_last_name_is_not_present(self):
 self.person.last_name = ""
 it.should_not(be_valid)

@describe
def when_age_is_not_present(self):
 self.person.age = None
 it.should_not(be_valid)

@describe
def when_gender_is_not_present(self):
 self.person.gender = ""
 it.should_not(be_valid)

@describe
def when_gender_is_invalid(self):
 self.person.gender = "X"
 it.should_not(be_valid)

Also, since full_name will probably be a property that combines
first_name and last_name, we’ll want to check that it behaves as it
should.:

@describe
def full_name(self):
 self.person.first_name = "Charles"
 self.person.last_name = "Dickens"
 its('full_name').should(equal, "Charles Dickens")

If you were to run manage.py test with this test in place, it would
probably give a bunch of (nice-looking) errors since the Person model
doesn’t even exist yet.

To get these tests to pass, we would create a model that looks something
like this:

class Person(models.Model):
 GENDER_CHOICES = [
 ('M', 'Male'),
 ('F', 'Female')]
 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=20)
 age = models.IntegerField()
 gender = models.CharField(max_length=1, choices=GENDER_CHOICES)

 @property
 def full_name(self):
 return '%s %s' % (self.first_name, self.last_name)

Request Tests

 Copyright 2013, Dustin Farris.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	RedRover 0.7.2 documentation

Index

 Copyright 2013, Dustin Farris.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		RedRover 0.7.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Dustin Farris.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

